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Algorithms

• What is an algorithm?
♦ A set of instructions to perform a task

• How do we evaluate an algorithm?
♦ Correctness 
♦ Accuracy

• Not an absolute

♦ Efficiency
• Relative to current and future machines

• How do we measure efficiency?
♦ Often by counting floating point operations
♦ Compare to “peak performance”
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Real and Idealized
Computer Architectures

• Any algorithm assumes an idealized 
architecture

♦ Common choice:
• Floating point work costs time
• Data movement is free

♦ Real systems:
• Floating point is free (fully overlapped with other 

operations)
• Data movement costs time…a lot of time

• Classical complexity analysis for numerical 
algorithms is no longer correct (more 
precisely, no longer relevant)

♦ Known since at least BLAS2 and BLAS3
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CPU and Memory Performance
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Trends in Computer 
Architecture I

• Latency to memory will continue to 
grow relative to CPU speed
♦ Latency hiding techniques require 

finding increasing amounts of 
independent work: Little’s law implies
• Number of concurrent memory 

references = Latency * rate
• For 1 reference per cycle, this is already 

100–1000 concurrent references
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Trends in Computer 
Architecture II

• Clock speeds will continue to 
increase
♦ The rate of clock rate increase has 

increased recently ☺
♦ Light travels 3 cm (in a vacuum) in 

one cycle of a 10 GHz clock
• CPU chips won’t be causally connected 

within a single clock cycle, i.e., a signal 
will not cross the chip in a single clock 
cycle

• Processors will be parallel!
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Trends in Computer 
Architecture III

• Power dissipation problems will force more 
changes

♦ Current trends imply chips with energy densities 
greater than a nuclear reactor

♦ Already a problem: The current issue of consumer 
reports looks at the likelihood of getting a serious 
burn from 
your laptop!

♦ Will force
new ways
to get 
performance,
such as 
extensive
parallelism
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Itanium Power Dissipation

• Power is not 
uniformly 
distributed 
across chip

• Peak power 
densities 
growing even 
faster
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Consequences

• Gap between memory and 
processor performance will 
continue to grow

• Data motion will dominate the cost 
of many (most) calculations

• The key is to find a computational 
cost abstraction that is as simple 
as possible but no simpler
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Architecture Invariants

• Performance is determined by memory 
performance

• Memory system design for performance 
makes system performance less 
predictable

• Fast memories possible, but
♦ Expensive ($)
♦ Large (meters3)
♦ Power hungry (Watts)

• Algorithms that don’t take these 
realities into account may be irrelevant
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Node Performance

• Current laptops now have a peak 
speed (based on clock rate) of 
over 2 Gflops (20 Cray1s!)

• Observed (sustained) performance 
is often a small fraction of peak

• Why is the gap between “peak” 
and “sustained” performance so 
large?

• Lets look at a simple numerical 
kernel
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Sparse Matrix-Vector Product

• Common operation for optimal (in 
floating-point operations) solution 
of linear systems

• Sample code:
for row=1,n

m   = i[row] - i[row-1];
sum = 0;
for k=1,m

sum += *a++ * x[*j++];
y[i] = sum;

• Data structures are a[nnz], j[nnz], 
i[n], x[n], y[n]
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Simple Performance Analysis

• Memory motion:
♦ nnz (sizeof(double) + sizeof(int)) + 

n (2*sizeof(double) + sizeof(int)) 
♦ Assume a perfect cache (never load same 

data twice)
• Computation

♦ nnz multiply-add (MA)
• Roughly 12 bytes per MA
• Typical WS node can move 1-4 

bytes/MA
♦ Maximum performance is 8-33% of peak
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Realistic Measures of  Peak Performance
Sparse Matrix Vector Product

one vector, matrix size, m = 90,708, nonzero entries nz = 5,047,120
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What About CPU-Bound 
Operations?

• Dense Matrix-Matrix Product 
♦ Most studied numerical program by 

compiler writers
♦ Core of some important applications
♦ More importantly, the core operation 

in High Performance Linpack
• Benchmark used to “rate” the top 500 

fastest systems

♦ Should give optimal performance… 
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The Compiler Will Handle It (?)

From Atlas

Compiler

Hand-tuned

Enormous effort required to get good performance

Large gap between 
natural code and 
specialized code 
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Performance for Real 
Applications

• Dense matrix-matrix example shows that even 
for well-studied, compute-bound kernels, 
compiler-generated code achieves only a small 
fraction of available performance

♦ “Fortran” code uses “natural” loops, i.e., what a user 
would write for most code

♦ Others use multi-level blocking, careful instruction 
scheduling etc. 

• Algorithms design also needs to take into 
account the capabilities of the system, not just 
the hardware

♦ Example: Cache-Oblivious Algorithms 
(http://supertech.lcs.mit.edu/cilk/papers/abstracts/a
bstract4.html)
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Challenges in Creating a Performance 
Model Based on Memory Accesses 

• Different levels of 
the memory 
hierarchies have 
significantly different 
performance

• Cache behavior 
sensitive to details 
of data layout

• Still no good calculus 
for predicting 
performance
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Is Performance Everything?

“In August 1991, the Sleipner A, an oil and gas 
platform built in Norway for operation in the 
North Sea, sank during construction. The total 
economic loss amounted to about $700 million. 
After investigation, it was found that the failure 
of the walls of the support structure resulted 
from a  serious error in the finite element 
analysis of the linear elastic model.” 
(http://www.ima.umn.edu/~arnold/disasters/slei
pner.html)
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Correctness and Accuracy

• Many current algorithms designed 
to balance performance and 
accuracy

• These choices often made when 
computers were 106 times slower
than they are now
♦ Is it time to re-examine these 

choices, particularly for applications 
that are now done on laptops?
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Algorithms

• Exploit problem behavior at different scales
♦ Multigrid
♦ Domain Decomposition

• Generalizes multigrid (or multigrid generalizes DD)
• Provides a spectrum of robust, optimal methods for a 

wide range of problems
• Nonlinear versions hold great promise

♦ Continuation 
♦ Divide and conquer
♦ Multipole and Wavelets

• Cache-sensitive algorithms
♦ See Karp in SIAM Review 1996
♦ Even the Mathematicians know 

about this now (McGeoch, AMS 
Notices March 2001)
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Conclusions

• Performance models should count data 
motion, not flops

• Computers will continue to have 
multiple levels of memory hierarchy
♦ Algorithms should exploit them

• Computers will be parallel
♦ Algorithms can make effective use of 

greater adaptivity to give better time-to-
solution and accuracy

• Denial is not a solution


